Saturday, 21.Dec.2024, 1:14:40
Welcome Guest | RSS



     Dr.(Phys.)Dipl.-Ing.Ralf-Udo Hartmann

48 Years Micro Chip and Beyond

Four decades ago today — November 15, 1971 — Intel placed an advertisement for the first single-chip CPU, the Intel 4004, in Electronic News. Designed by the fantastically-forenamed Federico Faggin, Ted Hoff, and Stanley Mazor, the 4004 was a 4-bit, 16-pin microprocessor that operated at a mighty 740KHz — and at roughly eight clock cycles per instruction cycle (fetch, decode, execute), that means the chip was capable of executing up to 92,600 instructions per second. We can’t find the original list price, but one source indicates that it cost around $5 to manufacture, or $26 in today’s money.
 
 
The 4004 used state-of-the-art Silicon Gate Technology (SGT) PMOS logic — a technique that Faggin perfected at Fairchild Semiconductor in 1968 — the world’s first metal-oxide-silicon (MOS) process. This breakthrough allowed the 4004 to have no less than 2,300 transistors and a feature size of 10 micron.
 
By comparison, there are half a billion transistors in a Sandy Bridge chip, and each one is just 0.032 micron. Considering a human hair is around 100 micron, the 4004 was still rather impressive — but irrespective of feature size or transistor count, the fact that it was carved from a single piece of silicon is what made the 4004 truly spectacular. Faggin was so proud of his creation that he even signed the chip "FF”, which you can see in the top right of the image below.
 
 
In real-world use, the 4004′s 92,600 instructions per second equated to the addition of two eight-digit numbers in 850 microseconds, or around 1,200 calculations per second. It’s perhaps not surprising that the first use of the 4004 was in the Japanese Busicom 141-PF calculator — and in fact, it was Busicom who originally asked Intel to create the 4004, as its in-house engineers needed 12 integrated circuits to make the 141 calculator work.
 
   Busicom actually owned the design of the 4004 and had exclusive rights to its use, but eventually agreed to let Intel sell the chip commercially — and thus the fateful appearance of that 1971 Electronic News ad. Despite the 4004′s success — and the popularity of its 8-bit successors, 8008 and 8080 — Intel was still very much a DRAM and SRAM company at the time. It wasn’t until the late ’70s with the 8088, which powered the IBM PC and its clones, that Intel decided to make the shift towards microprocessors, and as we now know, the rest is history.
 
 
Intel C4004 vs. Pentium 4 vs. XEON 5500
 
 
Intel C4004 has 2300 transistors / Pentium 4 with 188 million transistors
 
For example, compared to the Intel 4004, today’s second-generation Intel Core processors are more than 350,000 times the performance and each transistor uses about 5,000 times less energy. In this same time period, the price of a transistor has dropped by a factor of about 50,000.
 
 
Intel XEON 731 millionen transistors    300,000 x C4004
 
 
 
 
The introduction of the 5600 marks the next step in the transition to the Intel 32-nanometer processors, formerly code-named Westmere. The 32nm logic technology uses Intel’s second generation high-k metal gate transistors to increase speed and decrease energy consumption. Processors within the Xeon 5600 family range from a four core L5609 at 1.8GHz all the way up to a six core X5680 running a 3.33GHz. All chips have 12MB of L3 cache regardless of core count.
 
Intel XEON 5680 Core 6 Full-size image 3,2 MB
 
 
 
Future microprocessors developed on Intel’s next-generation 22nm manufacturing process are due in systems starting next year and will deliver even more energy-efficient performance as a result of the company’s 3-D Tri-Gate transistors that make use of a new transistor structure. "The sheer number of advances in the next 40 years will equal or surpass all of the innovative activity that has taken place over the last 10,000 years of human history.”
 
Tri-Gate transistor is operating with a smaller voltage to a lower level ofleakage so that the performance and efficiency is increased compared withcurrent transistor technology. Therefore, developers can be more flexible to choose the desired chip such as low power or high performance. According to Intel chips the performance 37% better than planar transistors used inIntel's 32nm today.

Google quantum computer leaves old-school supercomputers in the dust

A Google quantum computer has far outpaced ordinary computing technology, an achievement called quantum supremacy, that's an important milestone for a revolutionary way of processing data. Google disclosed the results in the journal Nature on Wednesday. The achievement came after more than a decade of work at Google, including the use of its own quantum computing chip, called Sycamore.

"Our machine performed the target computation in 200 seconds, and from measurements in our experiment we determined that it would take the world's fastest supercomputer 10,000 years to produce a similar output," Google researchers said in a blog post about the work.

The news, which leaked into the limelight in September with a premature paper publication, offers evidence that quantum computers could break out of research labs and head toward mainstream computing. They could perform important work like creating new materials, designing new drugs at the molecular level, optimizing financial investments and speeding up delivery of packages. And the quantum computing achievement comes as progress with classical computers, as measured by the speed of general-purpose processors and charted by Moore's Law, has sputtered.

IBM challenges Google's quantum results

IBM is a major quantum computing fan, but it questioned Google's prematurely released results in a blog post Monday.

"We argue that an ideal simulation of the same task can be performed on a classical system in 2.5 days and with far greater fidelity," the IBM researchers wrote. They suggested different algorithms and a different classical computer design in a preprint paper of their own.

Google said it welcomes improvements to quantum computer simulation techniques but said its overall result is "prohibitively hard for even the world's fastest supercomputer, with more double exponential growth to come. We've already peeled away from classical computers, onto a totally different trajectory."

And you can try for yourself if you like. Google released its quantum computer's raw output to encourage others to see if they can do better at simulating a quantum computer. "We expect that lower simulation costs than reported here will eventually be achieved, but we also expect that they will be consistently outpaced by hardware improvements on larger quantum processors," the Google researchers said. Intel didn't offer an opinion on Google's results, but did say quantum supremacy is "a strategic benchmark." 

"We are committed to moving quantum from the lab to commercialization," said Jim Clarke, Intel Labs' director of quantum hardware, in a statement.

Menue
Statistics
Test your Internet connection speed at Speedtest.net

Search
Entries archive
Calendar
«  December 2024  »
SuMoTuWeThFrSa
1234567
891011121314
15161718192021
22232425262728
293031
Search